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Abstract. We present an updated next-to-leading order analysis of the B → Xsγ branching ratio and
photon spectrum, including consistently the effects of Fermi motion in the heavy-quark expansion. For the
Standard Model, we obtain B(B → Xsγ) = (2.57 ± 0.26+0.31

−0.36) × 10−4 for the integral over the high-energy
part of the photon spectrum with Elab

γ > 2.2GeV, where the first error reflects the uncertainty in the input
parameters, and the second one the uncertainty in the calculation of Fermi motion. This prediction agrees
with the CLEO measurement of the same quantity within one standard deviation. From a reanalysis of
the CLEO data, we obtain for the total branching ratio B(B → Xsγ) = (2.62 ± 0.60exp

+0.37
−0.30 th) × 10−4

using the measured rate above 2.2GeV, and (2.66±0.56exp
+0.43
−0.48 th)×10−4 using a fit to the photon energy

spectrum. Both values are consistent with the Standard Model prediction of (3.29 ± 0.33) × 10−4. Our
analysis contains an improved discussion of renormalization-scale dependence and QED corrections. We
also study the sensitivity of the branching ratio and photon spectrum to hadronic parameters such as the
b-quark mass, and to possible contributions from New Physics beyond the Standard Model.

1 Introduction

The inclusive radiative decays B → Xsγ have been the
subject of a considerable number of experimental and the-
oretical investigations. About three years ago, the CLEO
Collaboration reported a first measurement of the branch-
ing ratio for these decays, yielding [1]

B(B → Xsγ) = (2.32 ± 0.57 ± 0.35) × 10−4 , (1)

where the first error is statistical and the second is system-
atic (including model dependence). Recently, the ALEPH
Collaboration has reported a measurement of the corre-
sponding branching ratio for b-hadrons produced at the Z
resonance, yielding [2]

B(Hb → Xsγ) = (3.11 ± 0.80 ± 0.72) × 10−4 , (2)

which is compatible with the CLEO result.
Being rare processes mediated by loop diagrams, in-

clusive radiative decays are potentially sensitive probes
of New Physics beyond the Standard Model, provided a
precise theoretical calculation of the branching ratio can
be performed. The general framework for such a calcu-
lation is provided by the heavy-quark expansion, which
predicts that, up to small bound-state corrections, inclu-
sive decay rates agree with the parton model rates for
the underlying decays of the b quark [3–5]. As long as
the fine structure of the photon energy spectrum is not
probed locally, the theoretical analysis of B → Xsγ de-
cays relies only on the weak assumption of global quark–
hadron duality. The leading nonperturbative corrections

have been studied in detail and are well understood [6–
11]. Still, the theoretical prediction for the branching ratio
suffers from large perturbative uncertainties of about 30%
if only leading-order expressions for the Wilson coefficient
functions in the effective weak Hamiltonian are employed
[12–14]. Therefore, it was an important achievement when
last year the full next-to-leading order calculation of the
total B → Xsγ branching ratio in the Standard Model was
completed, combining consistently results for the match-
ing conditions [15,16], matrix elements [17,18] and anoma-
lous dimensions [19]. With this calculation the theoretical
uncertainty was reduced to a level of about 10% [19,20].
More recently, the next-to-leading order analysis was also
extended to two-Higgs-doublet models [21,22].

Whereas considerable effort has thus gone into calcu-
lating the total B → Xsγ branching ratio, little progress
has been made in understanding the structure of the pho-
ton energy spectrum at next-to-leading order. On the
other hand, what is experimentally accessible is only the
high-energy part of the photon spectrum, and an under-
standing of the spectral shape is thus a prerequisite for ex-
trapolating the data to the full phase space. For instance,
the CLEO Collaboration has measured the spectrum in
the energy range between 2.2 and 2.7 GeV (in the labo-
ratory) and applied a correction factor of 0.87 ± 0.06 to
extrapolate to the total decay rate [23]1. This factor does
not take into account the full next-to-leading order cor-
rections to the decay rate. More importantly, it relies on
an estimate of bound-state effects [24] obtained using the

1 A similar treatment is followed in the ALEPH analysis [2]
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phenomenological model of Altarelli et al. [25], which is
not fully consistent with the heavy-quark expansion. The
small uncertainty assigned to the correction factor reflects
the fact that the model parameters (the Fermi momentum
and the constituent quark masses) have been tuned to fit
the lepton spectrum in B → Xc ` ν decays and then used
to predict the photon spectrum in B → Xsγ decays. It
is now known that there is no theoretical justification for
such a treatment [26–28]. These conceptual shortcomings
were not improved in the updated analysis of the photon
spectrum presented by Ali and Greub a few years ago [17],
although more complete formulae for the perturbative cor-
rections were used in this work and a more conservative
error analysis was presented.

The fact that only the high-energy part of the photon
spectrum in B → Xsγ decays is accessible experimen-
tally introduces a significant additional theoretical uncer-
tainty [29], which has been ignored in previous analyses.
This observation limits the potential of existing data on
these decays to probe or constrain New Physics beyond
the Standard Model (for recent reviews, see [30,31] and
references therein). In this paper, we investigate in a sys-
tematic way to what extent the high-energy part of the
photon energy spectrum in B → Xsγ decays can be con-
trolled theoretically. The “Fermi motion” of the b quark
inside the B meson, which determines the characteristic
shape to the photon spectrum, can be consistently de-
scribed by taking a convolution of the parton model pre-
diction for the spectrum with a universal shape function
F (k+), which determines the light-cone momentum dis-
tribution of the b quark in the B meson [26–28]. We will
for the first time present a discussion of Fermi motion ef-
fects in a full next-to-leading order analysis of B → Xsγ
decays. In addition, our analysis contains several improve-
ments over previous works concerning, in particular, the
estimate of perturbative uncertainties, and the inclusion of
QED corrections. In Sect. 2, we discuss in detail the struc-
ture of the B → Xsγ branching ratio at next-to-leading
order in QCD, correcting some errors in the formulae for
real-gluon radiation contributions employed by previous
authors. We introduce a decomposition of the branch-
ing ratio in terms of the values of the Wilson coefficients
Ci(mW ) at the weak scale, which is particularly conve-
nient to discuss the sensitivity to New Physics beyond the
Standard Model. This decomposition is also the starting
point of a thorough discussion of the renormalization-scale
dependence. We find that the perturbative uncertainty in
the theoretical prediction for the branching ratio has been
underestimated by previous authors [19–22] by more than
a factor of 2. We also suggest a new definition of the “to-
tal” branching ratio, which is insensitive to the unphysi-
cal soft-photon divergence in the b → sgγ subprocess. In
Sect. 3, we show that Fermi motion effects, which result
from the residual interaction of the b quark inside the B
meson, give rise to the dominant theoretical uncertainty
in the calculation of the partially integrated (over photon
energy) branching ratio. We present a consistent treat-
ment of these effects based on first principles of the heavy-
quark expansion, emphasizing that for such partially inte-

grated quantities the main element of uncertainty in the
description of Fermi motion lies in the value of the b-quark
mass. Other features associated with the detailed func-
tional form of the shape function play a minor role. We
make a prediction for the B → Xsγ branching ratio with a
restriction on the photon energy such that Elab

γ > 2.2 GeV
and find agreement with the CLEO measurement of the
same quantity within one standard deviation. We also ex-
tract a new value for the total branching ratio, which is
significantly different from the published CLEO result re-
ported in (1). In Sect. 4, we extend the discussion to the
photon spectrum itself, investigating first the structure of
the contributions from different operators in the effective
Hamiltonian. We find that, to a high degree of accuracy,
the shape of the photon spectrum is determined by QCD
dynamics and is insensitive to New Physics beyond the
Standard Model. We then perform a fit of our theoretical
predictions to the CLEO data on the photon spectrum
and extract again a value for the total branching ratio.
We also discuss the possibility of determining, from future
high-precision data on the photon spectrum, a value of the
b-quark mass with a well-defined short-distance interpre-
tation. In Sect. 5, we consider the hadronic invariant mass
spectrum and discuss the role of quark–hadron duality in
the comparison of experimental data with our theoretical
predictions. We derive a realistic, one-parameter descrip-
tion of the spectrum that is valid even in the low-mass
region, where quark–hadron duality breaks down. Finally,
in Sect. 6 we explore how New Physics beyond the Stan-
dard Model may affect the spectral shape and the total
branching ratio in B → Xsγ decays. Section 7 contains
the conclusions. The paper also comprises three Appen-
dices, where we discuss QED corrections to the B → Xsγ
branching ratio, the Doppler broadening of the photon
spectrum in the decays of B mesons produced at the Υ (4s)
resonance, and technical details of the calculation of the
photon energy spectrum.

2 B → Xsγ branching ratio

The theoretical analysis of the B → Xsγ branching ra-
tio at next-to-leading order has been discussed previously
by several authors. In this section we review the main
ingredients of the calculation. In addition, we present sev-
eral improvements of it, which concern the treatment of
leading-logarithmic QED corrections, the analysis of the
renormalization-scale dependence, and a discussion of the
sensitivity to New Physics. We also correct some mistakes
in the results for real-gluon emission presented in the lit-
erature.

The starting point in the calculation of inclusive B
decay rates is the low-energy effective Hamiltonian [32]

Heff = −4GF√
2

V ∗
tsVtb

∑
i

Ci(µb)Oi(µb) . (3)

The operators relevant to our discussion are

O2 = s̄LγµcLc̄LγµbL , O7 =
e mb

16π2 s̄LσµνFµνbR ,
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O8 =
gsmb

16π2 s̄LσµνGµν
a tabR . (4)

To an excellent approximation, the contributions of other
operators can be neglected. The renormalization scale µb

in (3) is conveniently chosen of order mb, so that all large
logarithms reside in the Wilson coefficient functions. The
complete theoretical prediction for the B → Xsγ decay
rate at next-to-leading order has been presented for the
first time by Chetyrkin et al. [19]. It depends on a param-
eter δ defined by the condition that the photon energy
be above a threshold given by Eγ > (1 − δ)Emax

γ , where
Emax

γ = mb/2 is the maximum photon energy attainable
in the parton model. (Throughout this paper, we will ne-
glect the mass of the strange quark whenever possible.)
The prediction for the B → Xsγ branching ratio is usually
obtained by normalizing the result for the corresponding
decay rate to that for the semileptonic decay rate, thereby
eliminating a strong dependence on the b-quark mass. We
define

Rth(δ) =
Γ (B → Xsγ)

∣∣
Eγ>(1−δ)Emax

γ

Γ (B → Xc e ν̄)

=
6α

πf(z)

∣∣∣∣V ∗
tsVtb

Vcb

∣∣∣∣
2

KNLO(δ) , (5)

where f(z) = 1 − 8z + 8z3 − z4 − 12z2 ln z ≈ 0.542 −
2.23(

√
z − 0.29) is a phase-space factor depending on the

mass ratio z = (mc/mb)2, for which we shall take
√

z =
0.29 ± 0.02. In the context of our analysis, the quark
masses are defined as one-loop pole masses. The electro-
magnetic coupling α = 1/137.036 is the fine-structure con-
stant renormalized at q2 = 0, as is appropriate for real-
photon emission [33]. The quantity KNLO(δ) = |C7|2 + . . .
contains the corrections to the leading-order result. In
terms of the theoretically calculable ratio Rth(δ), the B →
Xsγ branching ratio is given by

B(B → Xsγ)
∣∣
Eγ>(1−δ)Emax

γ
= Rth(δ) × B(B → Xc e ν̄)

= 0.105NSL Rth(δ) , (6)

where NSL = B(B → Xc e ν̄)/10.5% is a normalization
factor to be determined from experiment. To good ap-
proximation NSL = 1. The current experimental situation
of measurements of the semileptonic branching ratio of B
mesons and their theoretical interpretation are reviewed
in [34,35].

In the calculation of the quantity KNLO(δ) we shall
consistently work to first order in the small parameters
αs, 1/m2

Q and α/αs, the latter ratio being related to the
leading-logarithmic QED corrections. The general struc-
ture of the result is

KNLO(δ) =
∑

i,j=2,7,8
i≤j

kij(δ, µb) Re
[
C

(0)
i (µb) C

(0)∗
j (µb)

]

+S(δ)
αs(µb)

2π
Re

[
C

(1)
7 (µb) C

(0)∗
7 (µb)

]
+ S(δ)

α

αs(µb)

(
2 Re

[
C

(em)
7 (µb) C

(0)∗
7 (µb)

]

−k
(em)
SL (µb) |C(0)

7 (µb)|2
)

, (7)

where we have expanded the Wilson coefficients as2

Ci(µb) = C
(0)
i (µb) +

αs(µb)
4π

C
(1)
i (µb)

+
α

αs(µb)
C

(em)
i (µb) + . . . . (8)

The leading-order coefficients are given by

C
(0)
2 (µb) =

1
2

(
η− 12

23 + η
6
23

)
,

C
(0)
7 (µb) = η

16
23 C

(0)
7 (mW )

+
8
3

(
η

14
23 − η

16
23

)
C

(0)
8 (mW ) +

8∑
i=1

hi ηai ,

C
(0)
8 (µb) = η

14
23 C

(0)
8 (mW ) +

8∑
i=1

h̄i ηai , (9)

where η = αs(mW )/αs(µb), and hi, h̄i and ai are known
numerical coefficients [13,14]. In the Standard Model, the
Wilson coefficients of the dipole operators at the scale
mW are functions of the mass ratio xt = (mt(mW )/mW )2
given by [12]

C
(0)
7 (mW ) =

3x3
t − 2x2

t

4(xt − 1)4
lnxt +

−8x3
t − 5x2

t + 7xt

24(xt − 1)3
,

C
(0)
8 (mW ) =

−3x2
t

4(xt − 1)4
lnxt +

−x3
t + 5x2

t + 2xt

8(xt − 1)3
. (10)

The next-to-leading terms in (8) must be kept only for
the coefficient C7(µb). The expression for C

(1)
7 (µb) can

be found in (21) of [19]. Our treatment of QED correc-
tions differs from that of Czarnecki and Marciano [33]
in that we perform a renormalization-group improvement
to resum the contributions to C7(µb) of order αL (αsL)n,
with L = ln(mW /µb), to all orders in perturbation theory,
whereas these authors include only the terms with n = 0.
Numerically, the resummation decreases the effect of QED
correction by almost a factor of 2. The technical details of
our calculation are discussed in Appendix A. The result
for C

(em)
7 (µb) is

C
(em)
7 (µb) =

(
32
75

η− 9
23 − 40

69
η− 7

23 +
88
575

η
16
23

)
C

(0)
7 (mW )

+
(

− 32
575

η− 9
23 +

32
1449

η− 7
23 +

640
1449

η
14
23

− 704
1725

η
16
23

)
C

(0)
8 (mW ) − 190

8073
η− 35

23

− 359
3105

η− 17
23 +

4276
121095

η− 12
23 +

350531
1009125

η− 9
23

+
2

4347
η− 7

23 − 5956
15525

η
6
23 +

38380
169533

η
14
23

− 748
8625

η
16
23 . (11)

2 These are the effective, scheme-independent Wilson coeffi-
cient functions introduced in [14]
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The result for the leading QED correction to the semilep-
tonic decay rate is [36]

k
(em)
SL (µb) =

12
23

(
η−1 − 1

) ' 2αs(µb)
π

ln
mW

µb
. (12)

We note that unlike the factor α in (5), which results
from the calculation of a matrix element for a process
with real-photon emission, the QED corrections to the
Wilson coefficients arise from the evolution of local op-
erators, and hence the coupling α in (8) should in prin-
ciple be taken as a running coupling α(µ) rather than
the fine-structure constant renormalized at q2 = 0. How-
ever, including the running of the QED coupling in the
operator evolution would only induce corrections of order
(αL)2(αsL)n, which from a numerical point of view can
be safely neglected.

For the purpose of illustration, we note that with µb =
4.8 GeV the values of the various coefficients in the Stan-
dard Model are: C

(0)
2 (mb) ≈ 1.11, C

(0)
7 (mb) ≈ −0.31,

C
(0)
8 (mb) ≈ −0.15, as well as C

(1)
7 (mb) ≈ 0.48 and

C
(em)
7 (mb) ≈ 0.03. The QED correction proportional to

C
(em)
7 in (7) is about a factor 0.13 smaller than the next-

to-leading order QCD correction proportional to C
(1)
7 .

The coefficient functions kij(δ, µb) in (7) are given by

k77(δ, µb) = S(δ)
{

1 +
αs(µb)

2π

(
r7 + γ77 ln

mb

µb
− 16

3

)

+
[
(1 − z)4

f(z)
− 1

]
6λ2

m2
b

}

+
αs(µb)

π
f77(δ) + S(δ)

αs(µ̄b)
2π

κ̄(z) ,

k27(δ, µb) = S(δ)
[
αs(µb)

2π

(
Re(r2) + γ27 ln

mb

µb

)
− λ2

9m2
c

]

+
αs(µb)

π
f27(δ) ,

k78(δ, µb) = S(δ)
αs(µb)

2π

(
Re(r8) + γ87 ln

mb

µb

)

+
αs(µb)

π
f78(δ) ,

kij(δ, µb) =
αs(µb)

π
fij(δ) ;

{i, j} = {2, 2}, {8, 8}, {2, 8} , (13)

where

S(δ) = exp
[
−2αs(µb)

3π

(
ln2δ +

7
2

ln δ

)]
(14)

is a Sudakov factor, γ77 = 32
3 , γ27 = 416

81 and γ87 = − 32
9

are entries of the anomalous dimension matrix, and

r7 = −10
3

− 8π2

9
, Re(r8) =

44
9

− 8π2

27
,

Re(r2) ≈ −4.092 + 12.78(
√

z − 0.29) (15)

are numerical coefficients resulting from the calculation of
the matrix elements of the local operators Oi in the ef-
fective Hamiltonian at next-to-leading order [18]. Finally,

κ̄(z) ≈ 3.382 − 4.14(
√

z − 0.29) is the next-to-leading cor-
rection to the semileptonic decay rate [37]. To O(αs) the
explicit µb dependence of the coefficients kij(δ, µb) cancels
against that of the Wilson coefficient functions. Following
[20], we allow for different renormalization scales in radia-
tive and semileptonic B decays (i.e. µb 6= µ̄b).

The functions fij(δ) in (13) account for the effects of
real-gluon radiation and are defined such that fij(0) = 0.
They can be obtained from results given in [17,18] by
performing some phase-space integrations. We find

f77(δ) =
1
3

[
10δ + δ2 − 2δ3

3
+ δ(δ − 4) ln δ

]
,

f88(δ) =
1
27

{
4L2(1 − δ) − 2π2

3
+ 8 ln(1 − δ)

−δ(2 + δ) ln δ + 7δ + 3δ2 − 2δ3

3

−2
[
2δ + δ2 + 4 ln(1 − δ)

]
ln

mb

ms

}
,

f78(δ) =
8
9

[
L2(1 − δ) − π2

6
− δ ln δ +

9δ

4
− δ2

4
+

δ3

12

]
,

f22(δ) =
16
27

1∫
0

dx (1 − x)(1 − xδ)
∣∣∣∣ z

x
G

(x

z

)
+

1
2

∣∣∣∣
2

,

f27(δ) = −3f28(δ)

= −8z

9

1∫
0

dx (1 − xδ) Re
[
G

(x

z

)
+

x

2z

]
, (16)

where xδ = max(x, 1 − δ), and

G(t) =




−2 arctan2
√

t/(4 − t) ; t < 4 ,

2
(

ln
[
(
√

t +
√

t − 4)/2
]

− iπ

2

)2

; t ≥ 4 .

(17)
Our expressions for f78(δ) and f88(δ) disagree with the
corresponding ones in [19], which have later been used by
several authors. (The corrected expressions are also given
in an Erratum to [19].) We shall comment on the numer-
ical effect of this correction below. The function f88 is
sensitive to collinear singularities regulated by the mass
of the strange quark. The collinear logarithms can be re-
summed to all orders of perturbation theory, leading to
a collinear-safe result [38]. Unless δ is chosen very close
to 1, the net effect of the resummation is a moderate in-
crease of the result. Since the contribution proportional to
f88 is very small, however, it is sufficient for all practical
purposes to work with the leading-order expression given
above. We take a rather large value for the quark-mass
ratio, mb/ms = 50, in order to mimic the effect of the
resummation of collinear logarithms.

Bound-state corrections enter the theoretical expres-
sions for the coefficients kij at order 1/m2

Q and are pro-
portional to the hadronic parameter λ2 = 1

4 (m2
B∗ −m2

B) ≈
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0.12 GeV2 [39]. The corrections proportional to 1/m2
b en-

tering the expression for k77 characterize a spin-dependent
interaction inside the B meson [4–6]. A peculiar feature
of inclusive radiative decays is the appearance of the cor-
rection proportional to 1/m2

c in k27, which represents a
long-distance contribution arising from (cc̄) intermediate
states [7,8]. Strictly speaking, these effects are non-local
in nature; however, to a good approximation they can be
represented by a local 1/m2

c correction [9,10]. The correct
sign of this term has only recently been found in [11].

Finally, a comment is in order about our treatment of
the Sudakov factor, which is slightly different from that of
previous authors. In [19–21], the Sudakov factor was only
included for the leading term in k77. If this is done, the
decay rate becomes negative for small values of δ, which is
an unphysical result. All terms not vanishing in the limit
δ = 0 correspond to a two-body decay b → sγ and must
be suppressed by a Sudakov factor. Once this is done, the
quantity KNLO(δ) vanishes in the limit δ → 0 as it should.
A full next-to-leading order resummation of Sudakov log-
arithms that goes beyond the naive exponentiation of the
one-loop result shown in (14) is possible but rather compli-
cated. In [40,41], such a resummation has been performed
for high-order moments of the photon energy spectrum;
however, the results are such that a numerical evaluation
would require integration over the running coupling con-
stant αs(k⊥) in the region ΛQCD < k⊥ < mb. In [42], the
resummation has been extended to the partially integrated
photon spectrum itself (rather than its moments), and a
factorization of short- and long-distance contributions has
been performed such that all contributions from scales k⊥
in the range (ΛQCDmb)1/2 < k⊥ < mb are treated pertur-
batively, whereas contributions from scales in the range
ΛQCD < k⊥ < (ΛQCDmb)1/2 are absorbed into the def-
inition of the shape function. This guarantees that the
resummed formulae can be reliably evaluated in pertur-
bation theory. If this is done, it turns out that the resum-
mation is a very small effect, which can be neglected for
all practical purposes [42].

In order to explore the sensitivity of the theoretical
prediction for the B → Xsγ branching ratio to possible
New Physics contributions, it is instructive to make ex-
plicit the dependence of the result on the values of the
Wilson coefficients of the dipole operators O7 and O8 at
the scale mW . To this end, we introduce the ratios

ξ7 =
C7(mW )

CSM
7 (mW )

, ξ8 =
C8(mW )

CSM
8 (mW )

. (18)

They are normalized to the Standard Model contributions,
which at next-to-leading order take the values CSM

7 (mW )
≈ −0.22 and CSM

8 (mW ) ≈ −0.12 [15,16]. In many ex-
tensions of the Standard Model there are contributions
to C7(mW ) and C8(mW ) from new flavour physics at a
high scale, and consequently the parameters ξ7 and ξ8
may take (even complex) values different from 1. Similarly,
New Physics may induce dipole operators with opposite
chirality to that of the Standard Model, i.e. operators with
right-handed light-quark fields. If we denote by CR

7 and
CR

8 the Wilson coefficients of these new operators, the ex-

pression (7) can be modified to include their contributions
by simply replacing CiC

∗
j → CiC

∗
j + CR

i CR∗
j everywhere,

taking however into account that CR
2 = 0. We thus define

two additional parameters

ξR
7 =

CR
7 (mW )

CSM
7 (mW )

, ξR
8 =

CR
8 (mW )

CSM
8 (mW )

, (19)

which vanish in the Standard Model. Since the dipole op-
erators only contribute to rare flavour-changing neutral
current processes, there are at present rather weak con-
straints on the values of these parameters (see Sect. 6).
On the other hand, we assume that the coefficient C2 of
the current–current operator O2 takes its Standard Model
value, and that there is no similar operator containing
right-handed quark fields. Since the operator O2 mediates
Cabibbo-allowed decays of B mesons, any significant New
Physics contribution to C2 would already have been de-
tected experimentally.

With these definitions, the B → Xsγ branching ratio
can be decomposed as

1
NSL

B(B → Xsγ)
∣∣
Eγ>(1−δ)Emax

γ

= B22(δ) + B77(δ)
(|ξ7|2 + |ξR

7 |2) + B88(δ)
(|ξ8|2 + |ξR

8 |2)
+B27(δ) Re(ξ7) + B28(δ) Re(ξ8)

+B78(δ)
[
Re(ξ7ξ

∗
8) + Re(ξR

7 ξR∗
8 )

]
. (20)

The components Bij(δ) are formally independent of the
renormalization scale µb. Their residual scale dependence
results only from the truncation of perturbation theory at
next-to-leading order. In Table 1, the values of these quan-
tities are given for different choices of the renormalization
scale and the cutoff on the photon energy. The input pa-
rameters entering the calculation will be discussed below.
Typically, the components Bij vary by amounts of order
10–20% as µb varies between mb/2 and 2mb. The good
stability is a result of the explicit cancelation of the µb

dependence between the Wilson coefficients and matrix
elements achieved by a full next-to-leading order calcu-
lation. The Standard Model branching ratio is obtained
by adding the various contributions setting ξ7 = ξ8 = 1
and ξR

7 = ξR
8 = 0, as shown in the last column. The most

important contributions are the 2-2 and 2-7 terms, fol-
lowed by the 7-7 term. Note that with a realistic choice
of the cutoff parameter δ the coefficient B88(δ) of the
term proportional to |ξ8|2 + |ξR

8 |2 is very small. There-
fore, B → Xsγ decays have a low sensitivity to enhanced
chromo-magnetic dipole transitions. For the remainder of
this section we focus on the Standard Model and evaluate
the various theoretical uncertainties in the prediction for
the branching ratio. The impact of New Physics will be
discussed in Sect. 6.

In Table 1, the choice δ = 0.9 corresponds to the un-
realistic case of an almost fully inclusive measurement,
whereas δ = 0.3 and 0.15 correspond to a restriction to the
high-energy part of the photon spectrum, which in prac-
tice is required for experimental reasons. The theoretical
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Table 1. Values of the coefficients Bij(δ) in units of 10−4, for different
choices of µb

µb δ B22 B77 B88 B27 B28 B78
∑

Bij

mb/2 0.90 1.321 0.335 0.015 1.265 0.179 0.074 3.188
0.30 1.167 0.322 0.005 1.196 0.136 0.070 2.896
0.15 1.080 0.309 0.004 1.143 0.126 0.067 2.728

mb 0.90 1.258 0.382 0.015 1.395 0.161 0.083 3.293
0.30 1.239 0.361 0.005 1.387 0.137 0.080 3.210
0.15 1.200 0.347 0.004 1.354 0.132 0.077 3.114

2mb 0.90 1.023 0.428 0.015 1.517 0.132 0.092 3.206
0.30 1.041 0.402 0.004 1.552 0.118 0.091 3.209
0.15 1.021 0.386 0.004 1.535 0.115 0.088 3.150

Table 2. Different sources of theoretical uncertainties (in%)

δ µb µ̄b mc/mb mb mt αs(mZ) CKM EW cor. total

0.90 ±6.3 +2.2
−1.5

+5.9
−5.0

−1.0
+1.1

+1.6
−1.7

+2.8
−2.7 ±2.1 ±2.0 +10.0

− 9.3

0.30 ±6.6 +2.2
−1.5

+5.5
−4.6

−1.0
+1.0

+1.7
−1.7

+2.6
−2.6 ±2.1 ±2.0 +9.9

−9.3

0.15 ±7.1 +2.2
−1.5

+5.3
−4.5

−0.9
+1.0

+1.6
−1.7

+2.5
−2.4 ±2.1 ±2.0 +10.1

− 9.5

prediction for the branching ratio diverges in the limit
δ → 1 because of a logarithmic singularity in the term
proportional to f88(δ), which reflects the soft-photon di-
vergence of the b → sgγ subprocess. Previous authors [19–
21] have chosen to define the “total” B → Xsγ branching
ratio by taking δ = 0.99. In our opinion this is not the
best definition possible, because for values of δ so close
to 1 the theoretical result becomes very sensitive to the
unphysical soft-photon divergence. This is evident from
Fig. 1, which shows the integrated branching ratio as a
function of δ. We believe a more reasonable definition of
the “total” branching ratio is to use an extrapolation to
δ = 1 starting from the region δ ∼ 0.5–0.8, where the the-
oretical result exhibits a weak, almost linear dependence
on the cutoff. The simple geometric construction indicated
by the dashed lines in the figure shows that the extrap-
olated value so defined agrees, to a good approximation,
with the result obtained by taking δ = 0.9. Hence, from
now on we define the “total” branching ratio to be that
corresponding to this particular value of the cutoff.

The dependence of the theoretical results on the choice
of the renormalization scale is conventionally taken as an
estimate of higher-order corrections. Following common
practice, we vary the renormalization scales µb and µ̄b in-
dependently in the range between mb/2 and 2mb; their
central values are taken to be mb. The dependence on the
scale µ̄b entering the formula for the semileptonic decay
rate is straightforward to analyse. The result is shown in
Table 2. The analysis of the scale dependence of the ra-
diative decay rate is more subtle. Previous authors have
estimated the µb dependence of the total branching ratio
in the Standard Model and found a striking improvement
over the leading-order result. A dedicated discussion of
this issue has been presented by Buras et al. [20], and
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Fig. 1. Dependence of the B → Xsγ branching ratio on the
cutoff parameter δ. The dashed lines indicate the extrapolation
to the “total” branching ratio

the results obtained in this work were later confirmed in
[21,22]. One finds a variation of the total branching ra-
tio by +0.1

−3.2%, as compared with +27.4
−20.4% at leading order.

We agree with those results, but we believe they cannot
be taken as a realistic estimate of the size of unknown
higher-order corrections. The excellent stability observed
at next-to-leading order is largely due to an accidental
cancelation between different contributions to the decay
rate. This point of view is supported by the fact that
in some extensions of the Standard Model, such as two-
Higgs-doublet models, a much stronger scale dependence
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Fig. 2. Scale dependence of the B → Xsγ branching ratio (left) and of its three most important
components (right) in the Standard Model. For comparison, the lower plots show the results obtained
at leading order

is observed in some regions of parameter space [22]. On the
left-hand side in Fig. 2, we show the branching ratio as a
function of µb/mb, both at leading and at next-to-leading
order. The leading-order result is obtained by replacing
the quantity KNLO(δ) with |C(0)

7 (µb)|2. The three curves
in the upper plot refer to different choices of δ (there is
no cutoff dependence of the leading-order result). Note
the different scales in the two plots. The improvement
in going from the leading to the next-to-leading order is
spectacular and reduces the apparent scale dependence by
more than a factor of 10. However, a more careful look at
the upper plot reveals two surprises: first, the scale de-
pendence increases rapidly as µb is taken below 0.7mb,
although perturbation theory should work well for lower
scales than that; secondly, for µb > 2mb the prediction
for the partially integrated branching ratio with δ = 0.3
exceeds the prediction for the total branching ratio (ob-
tained with δ = 0.9), which is an unphysical result. Both
observations indicate that higher-order corrections may be
more important than what is suggested by the apparent
weak scale dependence of the curves in the plateau region.
The scale dependence of the three most important contri-
butions to the branching ratio (those from B22, B27 and

B77) is illustrated in the right-hand plots in Fig. 2. There is
again a significant improvement in going from the leading
to the next-to-leading order. However, the residual scale
dependence of the quantities Bij at next-to-leading order
is much larger than that of their sum, which determines
the total branching ratio in the Standard Model. Note,
in particular, the almost perfect cancelation of the scale
dependence between the 2-2 and the 2-7 term, which is
accidental since the magnitude of the 2-7 term depends
on the top-quark mass through the value of C

(0)
7 (mW ) in

(10), whereas the 2-2 term is independent of mt. In such
a situation, the apparent weak scale dependence of the
sum of all contributions is not a good measure of higher-
order corrections. Indeed, higher-order corrections must
stabilize the different curves in the right-hand upper plot
individually, not only their sum. The variation of the in-
dividual components Bij as a function of µb thus provides
a more conservative estimate of the truncation error than
does the variation of the total branching ratio. For each
component, we estimate the truncation error by taking one
half of the maximum variation obtained by varying µb be-
tween mb/2 and 2mb. The truncation error of the sum is
then obtained by adding the individual errors in quadra-
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ture. As shown in Table 2, we find a total truncation error
of about ±7%, which is more than a factor of 2 larger than
the estimates obtained by previous authors [19–22]. In our
opinion an even larger truncation error could be justified
given that the choice of the range of variation of µb is ad
hoc, and that the scale dependence of the various curves
in Fig. 2 is not symmetric around the point µb = mb.

Let us finally discuss the sensitivity of the theoretical
prediction for the B → Xsγ branching ratio to the various
input parameters entering the calculation. For the quark
pole masses, we take

√
z = mc/mb = 0.29 ± 0.02, mb =

(4.80± 0.15) GeV, and mt = (175± 6) GeV corresponding
to the running mass mt(mW ) = (178 ± 6) GeV. We use
the two-loop expression for the running coupling αs(µ)
with the initial value αs(mZ) = 0.118 ± 0.003. Finally,
for the ratio of the CKM parameters we take the value
|V ∗

tsVtb|/|Vcb| = 0.976±0.010 obtained from a global anal-
ysis of the unitarity triangle [43]. We also include an uncer-
tainty of ±2% to account for next-to-leading electroweak
radiative corrections [33]. The theoretical uncertainties
arising from the variation of each input parameter are col-
lected in Table 2. Adding the different errors in quadrature
we get total uncertainties of about ±10% for all three val-
ues of δ. For the total branching ratio in the Standard
Model we obtain B(B → Xsγ) = (3.29±0.33)×10−4NSL.
Contrary to common folklore, about 40% of the branching
ratio reflects the presence of the current–current operator
O2 in the effective Hamiltonian and is not related to pen-
guin diagrams with a top-quark loop. For comparison with
previous authors, we note that with the choice δ = 0.99
we would obtain B(B → Xsγ) = (3.37±0.34)×10−4NSL.

3 Implementation of Fermi motion

Whereas the explicit power corrections included in the
functions k77 and k27 in (13) are very small, there is an im-
portant nonperturbative effect that has not been included
so far in next-to-leading order analyses of the B → Xsγ
branching ratio: the residual motion of the b quark in-
side the B meson caused by its soft interactions with the
light constituents leads to a modification of the photon
energy spectrum, which is an important effect if a realis-
tic cutoff is imposed [44]. This so-called “Fermi motion”
is included in the heavy-quark expansion by resumming
an infinite set of leading-twist corrections into a shape
function F (k+), which governs the light-cone momentum
distribution of the heavy quark inside the B meson [26–
28]. This function shares many similarities with the par-
ton distributions in deeply inelastic scattering. The phys-
ical decay distributions are obtained from a convolution
of parton model spectra with this function. In the pro-
cess, phase-space boundaries defined by parton kinemat-
ics are transformed into the proper physical boundaries
defined by hadron kinematics. The shape function is a
universal, i.e. process-independent characteristic of the B
meson governing the inclusive decay spectra in processes
with massless partons in the final state, such as B → Xsγ
and B → Xu ` ν. It is important to note that this function
does not describe in an accurate way the distributions in

decays into massive partons such as B → Xc ` ν [27,28].
Unfortunately, therefore, the shape function cannot be de-
termined using the lepton spectrum in semileptonic decays
of B mesons, for which high-precision data exist. On the
other hand, there is some useful theoretical information
on the moments of the shape function, which are related
to the forward matrix elements of local operators [26]:

An =
∫

dk+ kn
+ F (k+) =

1
2mB

〈B| b̄ (iD+)nb |B〉 . (21)

The first three moments satisfy A0 = 1, A1 = 0 and A2 =
1
3µ2

π, where µ2
π = −λ1 is related to the kinetic energy

of the b quark inside the B meson [39]. The condition
A1 = 0, which is a consequence of the equations of motion,
ensures that the quark mass mb entering our theoretical
expressions is the pole mass (defined to the appropriate
order in perturbation theory, i.e. to one-loop order for our
purposes).

Let Pp(yp) be the photon energy spectrum in the par-
ton model, where yp = 2Eγ/mb with 0 ≤ yp ≤ 1. Our
goal is to include the effects of Fermi motion and calculate
the physical spectrum P (y) as a function of the variable
y = 2Eγ/mB . To leading-twist approximation, the result
is given by the convolution [26]

P (y) dy =
∫

dk+ F (k+)
[
Pp(yp) dyp

]
yp=yp(k+)

, (22)

where yp(k+) is obtained by replacing mb in the definition
of yp with the “effective mass” m∗

b = mb + k+ [28], i.e.
yp(k+) = 2Eγ/m∗

b = ymB/m∗
b . Because the support of

the shape function is restricted to the range −mb ≤ k+ ≤
mB − mb, it follows that 0 ≤ y ≤ 1. In other words,
after the inclusion of Fermi motion the spectrum extends
to the true kinematic endpoint at Emax

γ = mB/2. Let us
denote by Bp(δp) the integrated branching ratio calculated
in the parton model, which is given by an integral over the
spectrum Pp(yp) with a cutoff δp defined by the condition
that Eγ ≥ 1

2 (1 − δp)mb. From (22), it then follows that
the corresponding physical quantity B(δ) with δ defined
such that Eγ ≥ 1

2 (1 − δ)mB is given by

B(δ) =

mB−mb∫
mB(1−δ)−mb

dk+ F (k+) Bp

(
1 − mB(1 − δ)

mb + k+

)
. (23)

This relation is such that B(1) = Bp(1), implying that the
total branching ratio is not affected by Fermi motion; in-
deed, the 1/m2

Q corrections in (13) are the only power cor-
rections to the total branching ratio. The effects of Fermi
motion are, however, important for realistic values of the
cutoff. We will now evaluate relation (23) for the various
components Bij(δ) introduced in the previous section.

Several ansätze for the shape function have been sug-
gested in the literature [26–28]. For our purposes, given the
poor present knowledge about higher moments An with
n ≥ 3, it is sufficient to adopt the simple form

F (k+) = N (1 − x)ae(1+a)x ; x =
k+

Λ̄
≤ 1 , (24)
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Table 3. Values of the coefficients Bij(δ) in units of 10−4, corrected for Fermi motion

mb [GeV] δ Emin
γ [GeV] B22 B77 B88 B27 B28 B78

∑
Bij

4.65 0.90 0.26 1.289 0.375 0.014 1.401 0.162 0.083 3.324
0.30 1.85 1.201 0.333 0.004 1.322 0.132 0.075 3.068
0.15 2.24 0.802 0.220 0.002 0.889 0.087 0.050 2.050

4.80 0.90 0.26 1.258 0.382 0.014 1.395 0.160 0.083 3.291
0.30 1.85 1.213 0.352 0.004 1.362 0.134 0.078 3.144
0.15 2.24 0.945 0.272 0.003 1.071 0.104 0.060 2.456

4.95 0.90 0.26 1.227 0.388 0.014 1.388 0.157 0.083 3.259
0.30 1.85 1.200 0.365 0.004 1.375 0.133 0.080 3.156
0.15 2.24 1.072 0.323 0.003 1.239 0.118 0.070 2.825

where Λ̄ = mB − mb. This ansatz is such that A1 = 0
by construction3, whereas the condition A0 = 1 fixes the
normalization N . The parameter a can be related to the
second moment, yielding A2 = 1

3µ2
π = Λ̄2/(1 + a). Thus,

the b-quark mass (or Λ̄) and the quantity µ2
π (or a) are

the two parameters of our function. Below, we will take
mb = 4.8 GeV and µ2

π = 0.3 GeV2 as reference values, in
which case a ≈ 1.29. Because the main effect of Fermi mo-
tion is to fill the gap between the parton model endpoint
of the photon spectrum and the physical endpoint, it turns
out that the results are very sensitive to the choice of the b-
quark mass. Table 3 shows the coefficients Bij(δ) corrected
for Fermi motion using the above ansatz with a fixed value
a ≈ 1.29 but different values of mb. A representative range
of parameters is covered by considering the three follow-
ing cases: mb = 4.65 GeV (yielding Λ̄ ≈ 0.63 GeV and
µ2

π ≈ 0.52 GeV2), mb = 4.8 GeV (yielding Λ̄ ≈ 0.48 GeV
and µ2

π ≈ 0.3 GeV2), and mb = 4.95 GeV (yielding Λ̄ ≈
0.33 GeV and µ2

π ≈ 0.14 GeV2). We also show the values
of the photon energy cutoff, Emin

γ = 1
2 (1 − δ)mB , which

are now independent of the b-quark mass.
For a graphical illustration of the sensitivity of our re-

sults to the parameters of the shape function, we show in
the upper plots in Fig. 3 the predictions for the Standard
Model branching ratio as a function of the energy cutoff
Emin

γ . In the first plot, we use the same sets of parame-
ters as in Table 3, i.e. mb = 4.65 GeV (long-dashed curve),
4.8 GeV (solid curve), and 4.95 GeV (short-dashed curve),
with µ2

π adjusted such that the ratio µ2
π/Λ̄2 remains con-

stant. The gray line shows the result obtained using the
same parameters as for the solid line, but with a Gaus-
sian ansatz F (k+) = N (1 − x)ce−b(1−x)2 for the shape
function. For comparison, we also show the data point
B(B → Xsγ) = (2.04±0.47)×10−4 obtained by the CLEO
Collaboration with a cutoff at 2.2 GeV [23]. As shown in
Appendix B, the fact that in the CLEO analysis the cutoff
is imposed on the photon energy in the laboratory frame
rather than in the rest frame of the B meson is not very
important for the partially integrated branching ratio and
has been neglected here. In the second plot, we keep mb =
4.8 GeV fixed and compare the parton model result (gray

3 For simplicity, we neglect exponentially small terms in
mb/Λ̄

dotted curve) with the results corrected for Fermi motion,
using µ2

π = 0.15 GeV2 (short-dashed curve), 0.30 GeV2

(solid curve), and 0.45 GeV2 (long-dashed curve). This fig-
ure illustrates how Fermi motion fills the gap between the
parton model endpoint at mb/2 and the physical endpoint
at mB/2. To be precise, the physical endpoint is actu-
ally located at [m2

B − (mK + mπ)2]/2mB ≈ 2.60 GeV, i.e.
slightly below mB/2 ≈ 2.64 GeV. Close to the endpoint,
our theoretical prediction provides an average description
of the true spectrum in the sense of quark–hadron dual-
ity (see Sect. 5). Comparing the two upper plots in Fig. 3,
we observe that the uncertainty due to the value of the
b-quark mass is the dominant one. Variations of the pa-
rameter µ2

π have a much smaller effect on the partially
integrated branching ratio, and also the sensitivity to the
functional form adopted for the shape function turns out
to be small. This behaviour is a consequence of global
quark–hadron duality, which ensures that even partially
integrated quantities are rather insensitive to bound-state
effects. The strong remaining dependence on the b-quark
mass is simply due to the transformation by Fermi motion
of phase-space boundaries from parton to hadron kinemat-
ics. We believe that the spread of results obtained by vary-
ing mb between 4.65 and 4.95 GeV (with µ2

π adjusted as
described above) is a fair representation of the amount of
model dependence resulting from the inclusion of Fermi
motion. With a cutoff Emin

γ = 2.2 GeV as used in the
CLEO analysis, and correcting for the small effect of the
boost from the B rest frame to the laboratory frame (see
Appendix B), we obtain

B(B → Xsγ)
∣∣
Elab

γ >2.2 GeV = (2.57±0.26+0.31
−0.36)×10−4NSL .

(25)
The first error accounts for the dependence on the var-
ious input parameters, while the second one reflects the
uncertainty due to the modeling of Fermi motion. For a
cutoff as high as that employed in the CLEO analysis,
this uncertainty is in fact the dominant theoretical er-
ror. In the future, an effort should therefore be made to
lower the cutoff on the photon energy to a value of 2 GeV
or less. Comparing our result with the CLEO measure-
ment of (2.04± 0.47)× 10−4 [23], we obtain the ratio R =
Bexp/Bth = 0.79±0.18(exp)+0.14

−0.12(th) (assuming NSL = 1),
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Fig. 3. Theoretical predictions for the integrated B → Xsγ branching ratio (upper plots) and
the corresponding photon spectra (lower plots) for various choices of the shape-function parameters
(mb, µ2

π) and functional form, as explained in the text. The calculation of the photon spectra will
be discussed in Sect. 4

which deviates from unity by less than one standard de-
viation. This must be confronted with the comparison of
the total branching ratios using the value reported in (1),
which gives R = Bexp/Bth = 0.71 ± 0.20(exp) ± 0.07(th).
The extrapolation to low photon energies performed in the
CLEO analysis [1] has artificially increased the deviation
from the theoretical prediction by a significant amount,
i.e. the model dependence inherent in this extrapolation
has been underestimated. This is also reflected in the fact
that the correction factor relating the total branching ra-
tio to the branching ratio obtained with the cut Elab

γ >

2.2 GeV is K2.2 = 0.78+0.09
−0.11, which differs significantly

from the factor 0.87±0.06 employed by CLEO. Using our
correction factor, the extrapolation of the CLEO measure-
ment to the total branching ratio yields

B(B → Xsγ)CLEO = (2.62 ± 0.60exp
+0.37
−0.30 th) × 10−4

(26)

instead of the value quoted in (1). We stress that the
change in the central value and the increase of the theo-

retical error4 with respect to the result reported by CLEO
are entirely due to the improved treatment of bound-state
effects presented in this paper. Whereas the CLEO analy-
sis relies on a quark model, we perform an analysis that is
entirely based on QCD and the operator product expan-
sion. Our treatment is thus not only more conservative
but also more consistent from a theoretical point of view.

The procedure of extrapolating a measurement of the
B → Xsγ branching ratio in the region of high photon
energies to the total branching ratio not only introduces
large systematic errors, but also entails the disadvantage
that one has to rely on the Standard Model to describe the
photon spectrum in the low-energy region. In our opinion,
it would therefore be desirable if in the future the compar-
ison of theory with experiment were done for the partially
integrated branching ratio, which is the quantity actually
measured, rather than for the total branching ratio.

4 The second error quoted in (1) is dominated by experi-
mental systematics. The theoretical error was assumed to be
±0.16 × 10−4
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4 Photon spectrum and determination of mb

The large theoretical uncertainties in the calculation of
Fermi motion effects on the partially integrated branch-
ing ratio for B → Xsγ decays can be reduced in two ways.
The first possibility is to lower the cutoff Emin

γ on the pho-
ton energy. As is apparent from Fig. 3, if a value as low
as Emin

γ
<∼ 2 GeV could be achieved, the theoretical pre-

diction would become insensitive to the parameters of the
shape function. To what extent this will be possible in fu-
ture experiments depends on their capability to reject the
background of photons from other decays. The Cabibbo-
favoured B decays into charmed particles, in particular,
can yield photons of energy up to about 2.3 GeV. The
second possibility is that future high-precision measure-
ments of the photon spectrum will make it possible to ad-
just the parameters of the shape function from a fit to the
data. We repeat that these parameters cannot be deter-
mined from a study of the lepton spectrum in B → Xc ` ν
decays. On the other hand, a determination of the shape-
function parameters from B → Xsγ decays would enable
us to predict the lepton spectrum in B → Xu ` ν in a
model-independent way [26]. This may help to reduce the
theoretical uncertainty in the current value of |Vub|. A de-
tailed analysis of the photon spectrum will therefore be an
important aspect in future analyses of inclusive radiative
B decays.

Given the expression for the integrated B → Xsγ
branching ratio derived in the previous sections, the pho-
ton spectrum can be obtained from differentiation with
respect to δ, i.e.

P (y) =
1

B(B → Xc e ν̄)
dB(B → Xsγ)

dy

=
6α

πf(z)

∣∣∣∣V ∗
tsVtb

Vcb

∣∣∣∣
2

K ′
NLO(1 − y) , (27)

where y = Eγ/Emax
γ . In analogy with (7), we write

K ′
NLO(1 − y) =

∑
i,j=2,7,8

i≤j

pij(y, µb) Re
[
C

(0)
i (µb) C

(0)∗
j (µb)

]

+∆(y)
αs(µb)

2π
Re

[
C

(1)
7 (µb) C

(0)∗
7 (µb)

]
+∆(y)

α

αs(µb)

(
2 Re

[
C

(em)
7 (µb) C

(0)∗
7 (µb)

]

−k
(em)
SL (µb) |C(0)

7 (µb)|2
)

, (28)

where

∆(y) = − 4αs(µb)
3π(1 − y)

(
ln(1 − y) +

7
4

)
(29)

× exp
[
−2αs(µb)

3π

(
ln2(1 − y) +

7
2

ln(1 − y)
)]

is the derivative of the Sudakov factor. The Sudakov fac-
tor can be regarded as a smeared step function, and hence

∆(y) can be viewed as a smeared δ-function. Hence, we
must consider ∆(y) = O(1) rather than O(αs), in spite of
the prefactor αs in (30). The coefficient functions pij(y, µb)
in (28) have the same form as the coefficients kij(δ, µb) in
(13) but with the replacements S(δ) → ∆(y) and fij(δ) →
sij(y), where sij(y) = f ′

ij(1 − y). The explicit expressions
for these functions are presented in Appendix C.

Given the photon spectrum Pp(yp) in the parton model,
where yp = 2Eγ/mb, the next step is to implement Fermi
motion. According to (22), this is achieved by taking the
convolution

P (y) =

mB−mb∫
mBy−mb

dk+ F (k+)
mB

mb + k+
Pp

(
mBy

mb + k+

)
,

(30)
where y = 2Eγ/mB . It is convenient to decompose the
final result for the spectrum in a form analogous to (20)
by writing

1
NSL

dB(B → Xsγ)
dEγ

= 0.105 × 2
mB

P (2Eγ/mB)

= P22(Eγ) + P77(Eγ)
(|ξ7|2 + |ξR

7 |2)
+P88(Eγ)

(|ξ8|2 + |ξR
8 |2)

+P27(Eγ) Re(ξ7) + P28(Eγ) Re(ξ8)

+P78(Eγ)
[
Re(ξ7ξ

∗
8) + Re(ξR

7 ξR∗
8 )

]
. (31)

The results for the various components of the spectrum
are shown in Fig. 4, where we take central values of all in-
put parameters. The contributions are ordered according
to their magnitude. In the last plot, we show all com-
ponents together on a logarithmic scale. Note that, with
the exception of the tiny 8-8 contribution, the different
components have a very similar spectral shape. This ob-
servation implies that the shape of the photon spectrum is
not sensitive to physics beyond the Standard Model. With
a realistic cutoff on the photon energy, even large devia-
tions of the parameters ξ

(R)
7 and ξ

(R)
8 from their standard

values would not have a detectable effect on the shape of
the photon spectrum. Although this may be disappoint-
ing from the point of view of searching for New Physics in
B → Xsγ decays, it entails the advantage that a precise
measurement of the spectrum can be used to determine
the parameters of the shape function without relying on
the Standard Model. For the remainder of this section we
concentrate on the Standard Model, for which the photon
spectrum is given by the sum of the individual contri-
butions shown in Fig. 4. The results obtained for various
choices of the parameters of the shape function are shown
in the lower plots in Fig. 3. The photon spectra are more
sensitive to the functional form of the shape function than
are the predictions for the integrated branching ratio in
the upper plots. Therefore, a fit to future high-precision
data on the spectrum should use a more flexible ansatz
for the shape function than the one given in (24). On the
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Fig. 4. Different components of the photon spectrum in B → Xsγ decays

other hand, we will see below that even a small element of
smearing provided, e.g., by the finite detector resolution
or the Lorentz boost of photons from the B rest frame to
the laboratory frame, is sufficient to reduce this sensitivity
significantly.

Let us now make a comparison of our predictions for
the photon energy spectrum with the data obtained by
the CLEO Collaboration, which are presented in Table 4.
To this end, we must take into account that B mesons
produced in decays of the Υ (4s) resonance have a small
momentum in the laboratory system, so that the photon
spectrum is Doppler shifted. The boost that connects the
B rest frame with the laboratory frame is characterized
by

β =
|pB |
EB

=

√
1 − 4m2

B

m2
Υ (4s)

= 0.064 ± 0.007 , (32)

and the maximum energy in the laboratory frame is
(Elab

γ )max ≈ (1 + β)Emax
γ ≈ Emax

γ + 170 MeV. The for-
malism for incorporating this effect is discussed in Ap-
pendix B. The results are shown in the left-hand plot in
Fig. 5, where we compare the corrected photon spectra
with the CLEO data, using our standard parameters for
the shape function. No fit to the data has been performed;

Table 4. CLEO results for the photon spectrum in B → Xsγ
decays [23]. The value of the branching ratio reported in [1]
was obtained from the middle two bins

∆Elab
γ [GeV] dB/dElab

γ [10−4 GeV−1]

1.95–2.20 2.13 ± 2.38
2.20–2.45 4.50 ± 1.52
2.45–2.70 3.54 ± 0.98
2.70–2.95 0.11 ± 0.54

in all cases, the theoretical spectra are normalized to the
central Standard Model value of 3.29 × 10−4 for the to-
tal branching ratio (assuming NSL = 1). Note that after
the smearing implied by the Doppler shift of the spec-
tra, the gray and the black solid lines, which as before
correspond to different functional forms adopted for the
shape function, are very close together. This reflects the
reduced sensitivity to the fine details of the modeling of
Fermi motion, which is achieved by any kind of smearing
of the photon spectrum.

To perform a fit to the data, we rebin our theoretical
results in the same energy intervals as used by CLEO and,
for each set of parameters for the shape function, adjust
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Table 5. Results for the total B → Xsγ branching ratio, and upper limits at 90%
confidence level, obtained from a fit to the CLEO data shown in Table 4. The quantity
R denotes the ratio of the extracted value for the branching ratio to the Standard
Model prediction

mb = 4.65GeV mb = 4.80GeV mb = 4.95GeV

B(B → Xsγ) [10−4] 3.09 ± 0.66 2.66 ± 0.56 2.18 ± 0.47
90% CL < 4.66 < 4.06 < 3.26
χ2/ndof 0.64/3 0.08/3 0.97/3

R 0.94 ± 0.20 ± 0.09 0.81 ± 0.17 ± 0.08 0.66 ± 0.14 ± 0.07
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Fig. 5. Theoretical predictions for the photon energy spectrum in the laboratory frame for different
parameters of the shape function. The gray line in the left-hand plot shows the result obtained using
a Gaussian form of the shape function with central values of mb and µ2

π. The data points show the
CLEO results. In the left-hand plot, no fit to the data is performed, whereas the right-hand plot
shows the results of the best fits reported in Table 5

the overall normalization (i.e. the total branching ratio)
to give the best fit to the data. The results are reported
in Table 5, and the best fits displayed in the right-hand
plot in Fig. 5. All fits have an excellent χ2/ndof � 1, indi-
cating that with the present accuracy of the data it is not
possible to determine the parameters of the shape func-
tion in a meaningful way. Unless a very large value of mb

is chosen, the result for the total branching ratio comes
out higher than the value (1) reported by CLEO, and the
upper bounds for the branching ratio obtained at 90% con-
fidence level are well above the Standard Model prediction
of (3.29±0.33)×10−4. Combining the results obtained for
the three choices of mb, we get

B(B → Xsγ)spectrum
CLEO = (2.66 ± 0.56exp

+0.43
−0.48 th) × 10−4 ,

(33)
corresponding to a ratio R = Bexp/Bth = 0.81 ± 0.17
(exp)+0.13

−0.15(th), which deviates from unity by less than one
standard deviation. In quoting the theoretical error we
assume that the spread of the results shown in the three
columns of Table 5 represents a reasonable estimate of the
theoretical uncertainty arising from the modeling of the
shape function. The individual R ratios for the different
choices of mb are displayed in the last column in the table.
The result (33) is in good agreement with the value (26)

obtained from the extrapolation of the partially integrated
branching ratio measured by CLEO with a photon energy
cutoff at 2.2 GeV. Since the fit to the photon spectrum
uses more experimental information, we tend to consider
(33) to be the more conservative result of the two. We will
therefore use this value in our further analysis.

Once high-statistic measurements of the photon spec-
trum become available, it will be possible to determine the
parameters of the shape function directly from the data. In
particular, the average photon energy in B → Xsγ decays
is a sensitive measure of the b-quark mass. In practice,
what can be measured is the average photon energy as a
function of the cutoff Emin

γ , given by

〈Eγ〉 =

Emax
γ∫

Emin
γ

dEγ Eγ
dB
dEγ

Emax
γ∫

Emin
γ

dEγ
dB
dEγ

. (34)

Provided that Emin
γ is not too close to the endpoint, this

quantity is insensitive to the details of the shape function
except for the value of mb. Indeed, at leading order in the
heavy-quark expansion one simply gets 〈Eγ〉 = mb/2. The
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for different parameters of the shape function. The solid lines refer to: (1) mb = 4.95GeV and
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π = 0.14GeV2; (2) mb = 4.8GeV and µ2
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the Gaussian ansatz for the shape function

result for the average photon energy obtained by includ-
ing the full next-to-leading order corrections is shown in
Fig. 6. For simplicity, we neglect in this figure the boost
between the B rest frame and the laboratory frame, which
has a very small effect on the average photon energy. The
different curves in each plot refer to the various sets of
shape-function parameters considered previously in Fig. 3.
In the right-hand plot we show the average photon energy
normalized to mb/2. We observe that for Emin

γ
<∼ 1.8 GeV

the mean photon energy provides a sensitive measure of
the mass of the b quark, which to a good approximation is
independent of other shape-function parameters such as
µ2

π. Asymptotically, for very small cutoff values 〈Eγ〉 is
lower than mb/2 by about 3%. For Emin

γ
>∼ 1.8 GeV, on

the other hand, the sensitivity to the modeling of Fermi
motion quickly increases. For a cutoff at 2.2 GeV as em-
ployed in the CLEO analysis, there is very little sensitivity
to the value of mb.

Moments of the type shown in (34) have been con-
sidered previously by Kapustin and Ligeti [45] employing
the heavy-quark expansion but not including the effects
of Fermi motion. These authors make predictions for the
average photon energy and for the width of the photon
spectrum for cutoff values between 1.8 and 2.2 GeV. Our
findings show that for Emin

γ > 1.8 GeV there are signifi-
cant corrections to these predictions caused by Fermi mo-
tion. This has also been noted by Bauer [46].

Let us assume that in the future it will be possible to
measure the average photon energy in B → Xsγ decays
with a cutoff low enough to be insensitive to Fermi motion
effects. It is instructive to understand the precise meaning
of the b-quark mass that can then be extract from the
data. In the limit where Fermi motion can be neglected,
it follows from (30) that

〈Eγ〉 =
mb

2
×

1∫
1−δp

dyp yp Pp(yp)

1∫
1−δp

dyp Pp(yp)
, (35)

where mb is the pole mass, Pp(yp) is the photon spectrum
in the parton model, and 1 − δp = 2Emin

γ /mb. Using that

1∫
1−δp

dyp yp Pp(yp) =

δp∫
0

dz

1∫
1−z

dyp Pp(yp)

+(1 − δp)

1∫
1−δp

dyp Pp(yp) , (36)

we find for the average photon energy

〈Eγ〉 =
mb

2
CE [αs(mb)]

×
{
1 +

αs(mb)
π

D(δp) + δHT + . . .

}
, (37)

where

CE [αs] = 1 − 23
54

αs

π
+ O(α2

s) ≈ 0.97 ,

D(δp) = d̄77(δp) +
∑

i,j=2,7,8
i≤j

′ dij(δp)

×Re[C(0)
i (mb)C

(0)∗
j (mb)]

|C(0)
7 (mb)|2

. (38)

The prime on the sum indicates that (i, j) 6= (7, 7). The
functions dij(δp) and d̄77(δp) are collected in Appendix C.
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The normalization of d̄77 is such that d̄77(1) = 0, i.e. apart
from corrections due to operator mixing the average pho-
ton energy without any cutoff is given by 1

2mbCE [αs]. Fi-
nally, the quantity δHT in (37) parametrizes “higher-twist
corrections”, which are neglected in our leading-twist ap-
proximation to the shape function. An explicit calculation
of these corrections gives [6,26]

δHT = −λ1 + 3λ2

2m2
b

≈ (−0.1 ± 0.4)% , (39)

where we have assumed that −λ1 = µ2
π = (0.3±0.2) GeV2.

The contribution of δHT in (37) has a negligible effect.
In Fig. 7, the function D(δp) with δp = 1 − 2Emin

γ /mb

is shown over a wide range of cutoff values. For all real-
istic values of Emin

γ this function takes very small values.
The corresponding contribution to 〈Eγ〉 in (37) is typically
less than 1% and thus negligible. Therefore, to an excellent
approximation the average photon energy in B → Xsγ de-
cays measures the product of the b-quark pole mass times
the perturbative series CE [αs(mb)], which we have com-
puted to O(αs):

〈Eγ〉 ≈ mb

2
CE [αs(mb)] ≡ 1

2
m

(E)
b . (40)

It is well-known that the pole mass of a heavy quark is
an infrared-sensitive quantity, which cannot be unambigu-
ously defined beyond perturbation theory [47,48]. For-
mally, this property appears as a factorial divergence of
the expansion coefficients (i.e. an infrared renormalon) in
any perturbative series that relates the pole mass to a
short-distance mass, such as the running mass mb(mb)
in the MS subtraction scheme. On the other hand, the
average photon energy in radiative B-meson decays is a
physical observable and as such does not suffer from any
ambiguity. Therefore, the quantity m

(E)
b defined in (40)

has a short-distance nature. Indeed, it can be shown that
the renormalon in the pole mass is exactly cancelled by a

renormalon (i.e. a factorial divergence) in the perturbative
series CE [αs] [42]. In other words, the short-distance mass
m

(E)
b can be related to any other short-distance mass with-

out encountering large perturbative coefficients. In partic-
ular, we note that

m
(E)
b = mb(mb)

(
1 +

49
54

αs(mb)
π

+ . . .

)
. (41)

Thus, in principle an accurate measurement of the photon
spectrum in B → Xsγ decays would provide for a theoreti-
cally clean determination of the b-quark mass. In practice,
this determination will probably be limited by experiment
and may not be competitive with precision determinations
of mb from the analysis of the Υ spectrum.

5 Hadronic mass distribution

In B → Xsγ decays, the invariant mass of the hadronic
final state is related with the photon energy in the B rest
frame through M2

H = m2
B − 2mBEγ . Therefore, our theo-

retical results for the photon spectrum can be translated
into predictions for the hadronic mass spectrum. Since ex-
perimentally the measurements of the photon energy and
hadronic mass spectra are quite different, it may be use-
ful to discuss our results also in terms of the variable MH .
In the left-hand plot in Fig. 8, we show the correspond-
ing spectra obtained using our standard choices for the
parameters of the shape function.

At this point, it may be worthwhile to recall that the
theoretical predictions for the photon energy and hadronic
mass spectra must be understood in the sense of quark–
hadron duality. In particular, the true hadronic mass spec-
trum in the low-mass region may have resonance struc-
tures due to low-lying kaon states, and thus may look
rather different from our theoretical predictions. To dis-
cuss in more detail how quark–hadron duality works in
the present case we distinguish two kinematic regions: the
“endpoint region” and the “resonance region”. The end-
point region of the photon energy spectrum is character-
ized by the condition that Emax

γ − Eγ = O(Λ̄), where
Λ̄ = mB −mb. It is in this region that the effects of Fermi
motion are relevant and determine the shape of the spec-
trum. In the endpoint region, the invariant mass of the
hadronic final state is of order mBΛ̄ � Λ2

QCD, implying
that a large number of final states are kinematically acces-
sible. Under such circumstances, local quark–hadron dual-
ity ensures that the photon and hadronic mass spectra are
similar to the corresponding inclusive spectra predicted
by the heavy-quark expansion even without applying a
smearing procedure. In the resonance region, on the other
hand, the invariant mass of the hadronic final state is of or-
der Λ2

QCD, implying that the photon energy is very close to
the kinematic endpoint: Emax

γ −Eγ = O(Λ2
QCD/mB). The

heavy-quark expansion does not allow us to make model-
independent predictions for the structure of the individ-
ual resonance contributions. Global quark–hadron duality
can, however, be restored by averaging the spectra over a



20 A.L. Kagan, M. Neubert: QCD anatomy of B → Xsγ decays

MH [GeV]

mK�

4:65

4:95

4:80

mb [GeV] :

0 0.5 1. 1.5 2. 2.5 3. 3.5
0

0.5

1.

1.5

2.

2.5

3.

3.5

d
B
=d
M
H

[1
0�
4

G
eV
�

1
N
S
L
]

MH [GeV]

d
B
=d
M
H

[1
0�
4

G
eV
�

1
N
S
L
]

0 0.5 1. 1.5 2. 2.5 3. 3.5
0

0.5

1.

1.5

2.

2.5

3.

3.5
mb = 4:8GeV

Fig. 8. Theoretical predictions for the invariant hadronic mass spectrum for different parameters
of the shape function

Table 6. Mean masses and widths of the lowest-lying hadronic
states accessible in B → Xsγ decays [50], and the correspond-
ing photon energies (errors refer to changing MH by ±ΓH)

State H MH [GeV] ΓH [MeV] Eγ [GeV]

K (nπ) ≥ 0.629 continuum ≤ 2.60
K∗(892) 0.894 50 2.56 ± 0.01
K1(1270) 1.273 90 2.49 ± 0.02
K1(1400) 1.402 174 2.45 ± 0.05
K∗(1410) 1.412 227 2.45 ± 0.06
K∗

2 (1430) 1.428 103 2.45 ± 0.03
K2(1580) 1.580 110 2.40 ± 0.03
K1(1650) 1.650 150 2.38 ± 0.05
K∗(1680) 1.714 323 2.36 ± 0.10
K2(1770) 1.773 186 2.34 ± 0.06

sufficiently wide energy interval, whose size is determined
by the average level spacing between the resonance states
[49]. We will see below that in the present case the smear-
ing should be done over an interval ∆M2

H ≈ 2 GeV2, corre-
sponding to an energy interval ∆Eγ ≈ 0.2 GeV. Note that
in the case of the CLEO data such an averaging is auto-
matically provided by the Doppler shift of the spectrum
due to the motion of the B mesons produced at the Υ (4s)
resonance, and thus the photon spectrum is expected to
be dual to the theoretical spectrum over the entire energy
range.

To make these statements more precise, consider the
properties of the lowest-lying kaon states contributing to
B → Xsγ decays, which are collected in Table 6. There are
six resonances plus a continuum contribution feeding the
photon spectrum in the energy interval between 2.4 and
2.6 GeV. Hence, an average over this interval should be
calculable using global quark–hadron duality, although a
much finer resolution cannot be obtained. In the hadronic
mass spectrum, the K∗(892) peak is clearly separated

from the rest; however, the next resonances already have
widths exceeding the level spacing and hence are over-
lapping. Therefore, we expect that local duality allows
us to predict the hadronic mass spectrum in the region
MH

>∼ 1.5 GeV. Indeed, the pattern of resonances exhib-
ited in Table 6 suggests a simple but realistic model for
the hadronic mass spectrum consisting of a single Breit–
Wigner peak for the K∗(892) followed by a continuum
above a threshold Mcont, which is dual to the higher res-
onance contributions and given by the inclusive spectrum
calculated using the heavy-quark expansion. This gives

dB
dMH

=
2MHNK∗ B(B → K∗γ)

(M2
H − m2

K∗)2 + m2
K∗Γ 2

K∗

+Θ(MH − Mcont)
dBincl

dMH
, (42)

where

NK∗ =
mK∗ΓK∗

arctan
(

mK∗

ΓK∗

)
+

π

2

(43)

is the normalization of the Breit–Wigner distribution. The
exclusive branching ratio for the decay B → K∗γ can ei-
ther be taken from an independent measurement or de-
termined from a fit to the spectrum itself. The continuum
threshold Mcont is then fixed by the requirement that the
total branching ratio be the same as that predicted by the
heavy-quark expansion, yielding the condition

Mcont∫
0

dMH
dBincl

dMH
= B(B → Xsγ)

∣∣∣
Eγ>Econt

!= B(B → K∗γ) , (44)

where Econt = 1
2 (m2

B −M2
cont)/mB . In order to reduce sys-

tematic errors, it will in practice be advantageous to nor-
malize both sides of (44) to the total B → Xsγ branching
ratio.
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To illustrate this method we consider the central value
mb = 4.8 GeV and take from experiment the exclusive
branching ratio B(B → K∗γ) = (0.45 ± 0.17) × 10−4

[51] normalized to our fit result for the total branching
ratio given in (33). This yields B(B → K∗γ)/B(B →
Xsγ) = 0.17 ± 0.08. The value of the continuum thresh-
old which reproduces the central value of this ratio is
Mcont ≈ 1.15 GeV, which is close to the position of the
second resonance K1(1270). The dashed line in the right-
hand plot in Fig. 8 shows the hadronic mass spectrum
obtained from (42) using these parameters. To smoothen
out the sharp structures, we take a convolution of this
curve with a Gaussian smearing function of width σMH

=
100 MeV, which resembles the binning and resolution of
a realistic experiment. The result is shown by the solid
curve, which exhibits a two-peak structure: a narrow peak
located at the K∗ mass, whose width is determined by
the mass resolution of the experiment, is followed by a
broad bump containing a large number of overlapping res-
onances, whose sum is dual to the inclusive spectrum pre-
dicted by the heavy-quark expansion. The position of the
second peak is determined by the b-quark mass through
Mbump

H ≈ (mBΛ̄)1/2, which is located at 1.6 GeV in the
present case. This relation is just a reflection of the fact
that the b-quark mass determines the average photon en-
ergy in B → Xsγ decays (see Sect. 4). We note that such
a two-peak structure is indeed seen in the CLEO data
on the hadronic mass distribution [1]; however, in view
of the large experimental uncertainties it is premature to
perform a detailed comparison with the data.

6 Impact of New Physics and constraints
on extensions of the Standard Model

Measurements of the B → Xsγ branching ratio have been
used extensively to put constraints on the parameters of
various extensions of the Standard Model, such as multi-
Higgs models, supersymmetry, or left–right symmetric
models (see [30,31] for recent reviews). In many of these
extensions, the Wilson coefficients of the dipole opera-
tors O7 and O8 in the effective weak Hamiltonian receive
additional contributions from new flavour physics at a
high energy scale. The CLEO measurement of the B →
Xsγ branching ratio has been used to extract the mag-
nitudes of the Wilson coefficients C7(mW ) and C8(mW )
and to compare the results with various model predictions
(see, e.g., [52,53]). Likewise, new dipole operators of non-
standard chirality may be induced. In general, such New
Physics contributions would enter our analysis through
non-standard values of the parameters ξ

(R)
i defined in (18)

and (19). If these parameters carry non-trivial new weak
phases, there is potential for observing a large direct CP
asymmetry in the decays B → Xsγ, which would be a
striking signature for New Physics [44]. Here, we shall
discuss the impact of New Physics on the CP-average
B → Xsγ branching ratio.

The theoretical predictions for the branching ratio and
photon spectrum depend on five real combinations of the

parameters ξ
(R)
i , as shown in (20) and (31). It is convenient

to introduce the ratio of New Physics contributions to the
chromo-magnetic and magnetic dipole operators as

χ =
ξ8 − 1
ξ7 − 1

. (45)

A specific New Physics scenario will make a prediction
for this quantity. In models with dipole operators of non-
standard chirality, we assume that ξR

8 /ξR
7 is given by the

same ratio χ. Moreover, to simplify the discussion we
shall assume that χ is a real parameter. This is a good
approximation whenever there is a single dominant New
Physics contribution, such as the virtual exchange of a new
heavy particle, contributing to both the magnetic and the
chromo-magnetic dipole operators [54]. With this assump-
tion, there are only two independent structures appearing
in (20) and (31), which can be taken to be Re(ξ7) and
|ξ7|2 + |ξR

7 |2. Note that the imaginary part of ξ7 enters
only in combination with the right-handed coupling |ξR

7 |,
implying that by measuring the total branching ratio alone
one will not be able to put constraints on the weak phase
of ξ7.

As we saw in Sect. 4, New Physics contributions are
unlikely to alter the spectral shape of the photon spectrum
in the experimentally accessible region. We therefore focus
our discussion on the total branching ratio and define the
ratio

Rγ =
B(B → Xsγ)

BSM(B → Xsγ)
=

KNLO(δ)
KSM

NLO(δ)
, (46)

which directly measures the deviation from the Standard
Model. From our result (33) it follows that at the level
of two standard deviations 0.37 < Rγ < 1.25. It will be
convenient to define a similar ratio of branching ratios for
the rare hadronic decays B → Xsg, which are induced by
the chromo-magnetic dipole operator, so that

Rg =
B(B → Xsg)

BSM(B → Xsg)
=

|C8(mb)|2 + |CR
8 (mb)|2

|CSM
8 (mb)|2 . (47)

Whereas the Standard Model predicts the very small value
BSM(B → Xsg) ≈ 0.2%, a much larger branching ratio is
attainable in models with enhanced b → sg transitions
[54–56]. This would increase the production of charmless
final states in hadronic B decays, which could help to
explain the low experimental values of the semileptonic
branching ratio and charm yield. Although the systematic
errors in the measurements of these quantities are large,
the results favour values of B(B → Xsg) of order 10% [57,
58]. On the other hand, the CLEO Collaboration has re-
cently presented a preliminary upper limit on B(B → Xsg)
of 6.8% (90% CL) [59]. The limit is increased to 9.0% if
more recent charmed baryon and charmonium yields are
used [58]. In our graphical analysis below we will present
5% and 10% contours for this branching ratio. Which of
these two is considered to be a more realistic upper bound
is left to the taste of the reader.

The theoretical predictions for the two ratios R can be
written as

Rγ = 1 + A1(χ)
[
Re(ξ7) − 1

]
+ A2(χ)

(|ξ7|2 + |ξR
7 |2 − 1

)
,
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Table 7. Approximate ranges of χ values for various New
Physics contributions to C7 and C8, characterized by the par-
ticles in penguin diagrams

New Physics penguins χ

gluino–squark 2–20
techniscalar 9
charged Higgs–top 1.5–2.4
Higgsino–stop 0.2–2.2
left–right W–top 0.9
scalar diquark–top −(0.8–1.3)
neutral scalar–vectorlike quark −8

Rg = 1 + A3(χ)
[
Re(ξ7) − 1

]
+ A4(χ)

(|ξ7|2 + |ξR
7 |2 − 1

)
,

(48)

where

A1(χ) =
B27 + χB28 + (1 − χ)B78 + 2χ(1 − χ)B88

B22 + B27 + B77 + B28 + B78 + B88

≈ 0.46 + 0.020χ − 0.0027χ2 ,

A2(χ) =
B77 + χB78 + χ2B88

B22 + B27 + B77 + B28 + B78 + B88

≈ 0.11 + 0.025χ + 0.0013χ2 ,

A3(χ) =
2χ(1 − χ + r)

(1 + r)2
≈ 0.43χ(1 − χ) + 0.50χ ,

A4(χ) =
χ2

(1 + r)2
≈ 0.21χ2 , (49)

with r =
∑8

i=1 h̄i ηai−14/23/C
(0)
8 (mW ) ≈ 1.16. The ex-

pressions for the functions A1 and A2 follow directly from
(20), whereas those for A3 and A4 follow from the result
for C

(0)
8 (µb) given in (9). Since these functions depend on

ratios of coefficient functions, their numerical values are
rather stable against variations of the input parameters.
The numerical results quoted above are obtained by tak-
ing central values of all parameters, and in the case of A1
and A2 using Emin

γ = 1.95 GeV for the cutoff on the pho-
ton energy, corresponding to the energy interval covered
by the data shown in Table 4 and used to derive the result
(33).

Approximate ranges of χ for several illustrative New
Physics scenarios with b → sγ and b → sg penguin di-
agrams containing new particles in the loop have been
discussed in [44]5 and are collected in Table 7. Our aim
here is not to carry out a detailed study of each model, but
to give the reader an idea of the sizable variation that is
possible in χ. In supersymmetric theories, e.g., penguin di-
agrams with gluino–squark loops imply a positive value of
χ, which can be tuned over a large range by adjusting the
mass ratio mg̃/mq̃. A detailed analysis of the B → Xsγ
branching ratio in this scenario is presented in [56]. An-
other example with large positive χ is provided by mod-
els with techniscalars of charge 1

6 [54,60,61], whereas an
5 In the notation of this reference χ = ξSM/ξ with ξSM =

−3CSM
7 (mW )/CSM

8 (mW ) ≈ −6.05

example with large negative χ is provided by penguin di-
agrams with new neutral scalars and vectorlike quarks of
charge − 1

3 . In general, models with large |χ| offer the pos-
sibility of having a direct CP asymmetry in B → Xsγ
decays of as much as 10–50% in a large region of model
parameter space [44]. Examples of scenarios which lead
to more moderate χ values include left–right symmetric
models and multi-Higgs models.

Let us first assume that the New Physics contributions
to C7 and C8 do not contain new weak phases, and that
there are no new operators with non-standard chirality,
i.e. Im(ξ7) = ξR

7 = 0. In the left-hand plot in Fig. 9, we
show as a function of χ the allowed ranges for ξ7 which
satisfy the condition that 0.37 < Rγ < 1.25. We also show
as dashed lines the 5% and 10% contours for the B → Xsg

branching ratio. There are three different regions to dis-
tinguish: (a) for χ > 3 only positive values Re(ξ7) <∼ 1
are allowed, which are close to the Standard Model value
ξ7 = 1; (b) for −1 < χ < 3 a second branch of large
negative values of Re(ξ7) is allowed, which have magni-
tude several times larger than in the Standard Model;
(c) for χ < −1 only the first branch remains, and the
combined constraints from the B → Xsγ and B → Xsg

branching ratios imply that −1 < ξ7 < 2.5. The right-
hand plot in Fig. 9 shows the same information in a differ-
ent way, namely in the plane spanned by the (real) New
Physics contributions to the Wilson coefficients C7(mW )
and C8(mW ). This figure generalizes the corresponding
leading-order results discussed in [52,53,56]. It is evident
that for a given New Physics scenario, i.e. for a chosen
value of χ, the constraints imposed on the Wilson coeffi-
cients are quite non-trivial. An example is provided by the
“minimal supergravity model” [62] investigated by Hewett
and Wells [53], who perform a scan in the SUSY parameter
space finding that −2.5 < ξ7 < 5.5, and χ ≈ 1 for choices
of parameters yielding sizable New Physics contributions
to C7 and C8. From Fig. 9 it follows that in this model
the constraint from the B → Xsγ branching ratio implies
−0.1 < ξ7 < 1.2, which excludes a considerable fraction of
the SUSY parameter space, whereas there is no constraint
from the experimental bound on the B → Xsg branching
ratio. Hence, in the minimal supergravity model the Wil-
son coefficients must take values close to those predicted
by the Standard Model or somewhat smaller.

The situation becomes more complicated if one al-
lows for complex values of the Wilson coefficients arising
from new weak phases (i.e. Im(ξ7) 6= 0), or considers the
possibility of having dipole operators with non-standard
chirality (i.e. ξR

7 6= 0) [63]. Three illustrative cases are
shown in Fig. 10. Note that for large |χ| the constraint
from the B → Xsg branching ratio is quite non-trivial
and puts a stringent upper bound on the combination
[Im(ξ7)]2 + |ξR

7 |2.

7 Conclusions

The inclusive radiative decays B → Xsγ play a key role
in testing the Standard Model and probing the structure
of possible New Physics. We have presented a detailed
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study of these decays using the operator product expan-
sion for inclusive decays of heavy hadrons combined with
the twist expansion for the description of decay distribu-
tions near phase-space boundaries. We have updated (and
corrected) the existing next-to-leading order analyses of
the total B → Xsγ branching ratio and added several im-
provements concerning the treatment of QED corrections,
the analysis of the renormalization-scale dependence, and
the discussion of the sensitivity to New Physics. In par-
ticular, we have argued that the truncation error of the
perturbative expansion in αs has been underestimated by
previous authors by at least a factor of 2.

Our main focus, however, was to implement a consis-
tent treatment of bound-state effects related to the soft
interactions of the b-quark inside the B meson. These ef-
fects cause the Fermi motion of the heavy quark, which

is responsible for the characteristic shape of the photon
energy spectrum in B → Xsγ decays. They lead to the
main theoretical uncertainty in the calculation of the in-
clusive branching ratio if a restriction to the high-energy
part of the photon spectrum is imposed. Fermi motion is
naturally incorporated in the heavy-quark expansion by
resumming an infinite set of leading-twist operators into
a non-perturbative shape function. The main theoretical
uncertainty in this description lies in the value of the b-
quark mass. Other features associated with the detailed
functional form of the shape function play only a minor
role, particularly if a partial integration over the decay dis-
tributions is implied. We have explained how the value of
mb could, in principle, be extracted from a measurement
of the average photon energy in B → Xsγ decays. For
the Standard Model, we have obtained B(B → Xsγ) =
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(2.57 ± 0.26+0.31
−0.36) × 10−4 for the integral over the high-

energy part of the photon spectrum with Elab
γ > 2.2 GeV,

where the first error reflects the uncertainty in the in-
put parameters, and the second one the uncertainty in
the calculation of Fermi motion. This prediction agrees
with the CLEO measurement of the same quantity within
one standard deviation. From a reanalysis of the CLEO
data, we have obtained values for the total branching ratio
that are consistent with the Standard Model prediction of
(3.29 ± 0.33) × 10−4. In the future, an effort should be
made to lower the cutoff on the photon energy to a value
of 2 GeV or less, even if this would increase the experi-
mental systematic errors. The benefit of such a low cutoff
would be that the calculation of the branching ratio be-
comes insensitive to the effects of Fermi motion, reducing
the theoretical uncertainty to the level of 10%.

Besides the photon spectrum, we have studied the in-
variant hadronic mass distribution in radiative B decays.
Investigating the pattern of individual hadron resonances
contributing to the spectrum, we have argued that a com-
plementarity between the inclusive theoretical distribution
and the true spectrum should set in for MH

>∼ 1.5 GeV.
This leads us to a simple description of the hadronic mass
spectrum with only a single parameter, the B → K∗γ
branching ratio, to be determined from experiment.

Finally, we have investigated the sensitivity of the B →
Xsγ branching ratio and photon spectrum to New Physics
beyond the Standard Model and set up a formalism to in-
clude possible non-standard contributions in a straightfor-
ward way. New Physics contributions enter our predictions
through the values of parameters ξ

(R)
i , which are defined

in terms of Wilson coefficient functions at the scale mW .
This formalism allows us to account for non-standard con-
tributions to the magnetic and chromo-magnetic dipole
operators, as well as operators with right-handed light-
quark fields. In the context of a particular model, all that
is needed is to perform a matching calculation determin-
ing the Wilson coefficients in the effective Hamiltonian at
the weak scale. We find that, quite generally, New Physics
contributions would not affect the shape of the photon
spectrum, but could change the total branching ratio by a
considerable amount. This implies that the analysis of the
photon energy and hadronic mass spectra, which is crucial
for the experimental determination of the total branch-
ing ratio, can be performed without assuming the correct-
ness of the Standard Model. On the other hand, the total
branching ratio will provide a powerful constraint on the
structure of New Physics beyond the Standard Model, as
we have illustrated with some specific examples.

We believe that our work eliminates the remaining ele-
ments of model dependence present in previous studies of
the photon spectrum in B → Xsγ decays and, therefore,
provides a firm theoretical basis for analyses of experimen-
tal data on inclusive radiative B decays. We are confident
that in the near future, when measurements of the photon
spectrum with high statistics will be performed, it will be
possible to derive a value for the B → Xsγ branching ratio
that is less model-dependent than existing ones, thus pro-

viding one of the most sensitive tests of the flavour sector
of the Standard Model.

Note added in proof: While this paper was in prepa-
ration the CLEO Collaboration presented a preliminary
update of the B → Xsγ branching ratio, yielding B(B →
Xsγ) = (2.50 ± 0.47 ± 0.39) × 10−4 [64]. This value has
been obtained using the original analysis adopted in [1].
We expect that using our improved theoretical predictions
the central value will increase to about 2.8 × 10−4, which
is close to the prediction of the Standard Model.
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Appendix A: QED corrections to C7(mb)

QED corrections affect the theoretical prediction for the
B → Xsγ branching ratio in three ways: there are O(α)
matching corrections to the Wilson coefficients Ci(mW ) at
the weak scale, there are O(α) contributions to the ma-
trix elements of the operators in the effective Hamiltonian
at the scale µb, and there are O(αL) corrections to the
evolution of the operators from the scale mW down to the
scale µb, where L = ln(mW /µb). The latter corrections are
logarithmically enhanced. They can be accounted for by
including the O(α) contributions to the anomalous dimen-
sion matrix of the operators in the effective Hamiltonian
in the solution of the renormalization-group equation. On
the other hand, a complete calculation of the remaining
O(α) corrections would be extremely cumbersome. For-
tunately, it is likely that these corrections will be smaller
than the next-to-next-to-leading QCD corrections of order
α2

s.
When QED corrections are included, as many as twelve

operators in the effective Hamiltonian mix under renor-
malization. Besides the current-current operators O1 and
O2 and the dipole operators O7 and O8, these are four
QCD penguin and four electroweak penguin operators.
However, it turns out that to a very good approxima-
tion the mixing of (O1, O2, O7, O8) with the penguin op-
erators can be neglected. This approximation reproduces
the leading-order results in (9) exactly but for the terms∑

i hiη
ai and

∑
i h̄iη

ai in C
(0)
7 and C

(0)
8 . Numerically,

C
(0)
7 (mb) is reproduced with an accuracy of 3× 10−3, and

C
(0)
8 (mb) with an accuracy of 3.7%.

Including QED corrections, the one-loop anomalous di-
mension matrix in the truncated operator basis is

γ =
αs

4π
γ0 +

α

4π
Γ0 , (A.1)



A.L. Kagan, M. Neubert: QCD anatomy of B → Xsγ decays 25

where

γ0 =




−2 6 0 3
6 −2 416

81
70
27

0 0 32
3 0

0 0 − 32
9

28
3


 ,

Γ0 =




− 8
3 0 − 208

81 − 8
27

0 − 8
3 − 208

243 − 116
81

0 0 16
9 − 8

3

0 0 0 8
9


 . (A.2)

We have determined the entries of the QED matrix Γ0
using the results of Ciuchini et al. [65] for the contributions
to each entry of the QCD matrix γ0, taking into account
their colour structure and the electric charges of the quark
fields involved. We collect the Wilson coefficient functions
C

(0)
i into a vector C and write their evolution as

C(µ) = U(µ, mW )C(mW ) , (A.3)

where the evolution matrix satisfies the renormalization-
group equation

µ
d
dµ

U(µ, mW ) = γT U(µ, mW ) . (A.4)

To solve this equation, we make the ansatz

U(µ, mW ) = K(µ)U0(µ, mW )K−1(mW ) , (A.5)

where U0(µ, mW ) is the leading-order QCD evolution ma-
trix. To first order in the electro-magnetic coupling α we
may write

K(µ) = 1 + α

(
K0

αs(µ)
+ . . .

)
, (A.6)

where the ellipses represent terms that do not contribute
at leading-logarithmic order. Inserting this ansatz into the
renormalization-group equation satisfied by K(µ), we ob-
tain K0 from the solution of the algebraic equation

2β0K0 = Γ0
T + [γ0

T ,K0] , (A.7)

where β0 = 23
3 is the first coefficient of the QCD β-

function for nf = 5 light quark flavours. Let us introduce
the matrix V that diagonalizes the QCD anomalous di-
mension matrix, i.e.

V−1γ0
T V ≡ diag(γ1, γ2, γ3, γ4) , (A.8)

and denote k = V−1K0 V and g = V−1Γ0
T V. Then the

solution of (A.7) yields

kij =
gij

2β0 − (γi − γj)
. (A.9)

The result for the evolution matrix U(µ, mW ) can now be
written in the form U(µ, mW ) = VuV−1, where

uij = ηi δij + α kij

(
ηi

αs(µ)
− ηj

αs(mW )

)
;

ηi =
(

αs(mW )
αs(µ)

)γi/2β0

. (A.10)

This general result has previously been derived by
Buchalla et al. [66]. The evaluation of this relation for our
particular case leads to the expression for the QED coeffi-
cient C

(em)
7 (µb) given in (11). The coefficients of C

(0)
7 (mW )

and C
(0)
8 (mW ) in this result are exact, whereas the re-

maining terms are only approximate because of the trun-
cation of the operator basis. However, as in the case of
the QCD evolution we expect that from a numerical point
of view the truncation of the basis is justified. Expanding
the result (11) to first order in αs we recover the formula
of Czarnecki and Marciano [33]:

α

αs(µb)
C

(em)
7 (µb) =

α

4π

(
208
243

− 16
9

C
(0)
7 (mW )

)

× ln
mW

µb
+ . . . . (A.11)

Numerically, the resummed expression in (11) is smaller
than the naive result (A.11) by a factor of about 0.55.

We note that Czarnecki and Marciano also include
a particular type of matching correction to the coeffi-
cient C7(mW ) at the weak scale, arising from fermion-
loop insertions on the W -propagator in the top-quark–
W penguin diagram [33]. The resulting contribution is
∆C7(mW ) ≈ 0.53α, which at the scale mb yields a con-
tribution ∆C7(mb) ≈ 0.36α ≈ 2.6 × 10−3. Since there
are many other matching corrections that have not yet
been calculated, and since there are similar O(α) contri-
butions to the matrix elements of the local operators Oi

that are neglected, we see no compelling reason to include
this particular matching contribution. Its effect on the to-
tal branching ratio does not exceed the level of 1% and
is thus safely within the theoretical uncertainty of ±2%,
which we assign to higher-order electroweak corrections.

Appendix B: Photon spectrum in decays of
B mesons produced at the Υ (4s) resonance

We denote by Elab
γ the photon energy measured in the lab-

oratory, and by Eγ the one measured in the B rest frame.
If dB/dEγ is the photon spectrum in the B rest frame, the
corresponding spectrum measured in the laboratory is

dB
dElab

γ

=
1

β+ − β−

E1(Elab
γ )∫

β−Elab
γ

dEγ
1

Eγ

dB
dEγ

, (B.1)

where

β± =

√
1 ± β

1 ∓ β
≈ 1 ± β ,

E1(Elab
γ ) = min(β+Elab

γ , Emax
γ ) . (B.2)

The maximum photon energy in the laboratory is
(Elab

γ )max = β+Emax
γ .
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It is straightforward to calculate from (B.1) the effect
of the boost on the partially integrated branching ratio.
Let us define the difference

∆(E0) =

(Elab
γ )max∫
E0

dElab
γ

dB
dElab

γ

−
Emax

γ∫
E0

dEγ
dB
dEγ

. (B.3)

Then, provided that E0 < β−Emax
γ , we find that

∆(E0) =
1 − β

2β

β+E0∫
E0

dEγ
dB
dEγ

(
1 − β+E0

Eγ

)

+
1 + β

2β

E0∫
β−E0

dEγ
dB
dEγ

(
1 − β−E0

Eγ

)

= −β2E3
0

6

(
d

dE

1
E

dB
dE

)
E=E0

+ O(β4) , (B.4)

i.e. the effect is quadratic in the small quantity β. With
E0 = 2.2 GeV as in the CLEO analysis, we find that
∆(E0) ≈ −(0.04–0.09) × 10−4 depending on the parame-
ters of the shape function, which is a very small effect.

Appendix C: Results for the functions sij(y)
and dij(δ)

The functions sij(y) entering the theoretical expressions
for the photon spectrum are given by the derivatives of
the functions fij(δ) in (16) through sij(y) = f ′

ij(1 − y).
Explicitly, we find

s77(y) =
1
3

[
7 + y − 2y2 − 2(1 + y) ln(1 − y)

]
,

s88(y) =
1
27

{
2(2 − 2y + y2)

y

[
ln(1 − y) + 2 ln

mb

ms

]

−2y2 − y − 8(1 − y)
y

}
,

s78(y) =
8
9

[
1 − y

y
ln(1 − y) + 1 +

y2

4

]
,

s22(y) =
16
27

y∫
0

dx (1 − x)
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1
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,
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9
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dxRe
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G

(x

z

)
+

x

2z

]
. (C.1)

The functions dij(δ) entering the expression for the
average photon energy in (37) are given by

dij(δ) =

δ∫
0

dx fij(x) − δ fij(δ) . (C.2)

We find

d77(δ) =
2δ2

9
(3 − δ) ln δ − 4δ2

3
− 7δ3

27
+

δ4

6
,

d88(δ) =
8
27

(
ln

mb

ms
− 1

) [
ln(1 − δ) + δ +

δ2

4
+

δ3

6

]

+
4
27

[
π2

6
− L2(1 − δ) +

(
δ +

δ2

4
+

δ3

6

)
ln δ

−δ − δ2

4
− 5δ3

36
+

δ4

8

]
,

d78(δ) =
8
9

[
π2

6
− L2(1 − δ) +

(
δ +

δ2

2

)
ln δ

−δ − 7δ2

8
+

δ3

6
− δ4

16

]
,

d22(δ) = − 8
27

1∫
0

dx (1 − x)(1 − xδ)2
∣∣∣∣ z

x
G

(x

z

)
+

1
2
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2

,

d27(δ) = −3d28(δ)

=
4z

9

1∫
0

dx (1 − xδ)2 Re
[
G

(x

z

)
+

x

2z

]
. (C.3)

The function d̄77(δ) is defined as

d̄77(δ) = d77(δ) + δ

(
1 +

4
3

ln δ

)
+

23
54

. (C.4)

The second term is the contribution of the Sudakov log-
arithms. It is this contributions which, in large orders,
develops a factorial divergence that cancels the infrared
renormalon of the pole mass [42]. The last term in (C.4)
is adjusted such that d̄77(1) = 0. This condition defines
the coefficient CE [αs] in (37).
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